Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Essays Biochem ; 67(3): 399-414, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805644

RESUMO

Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (ß/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel ß-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Animais , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Oligossacarídeos/química , Fucose/química , Especificidade por Substrato , Mamíferos/metabolismo
2.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943155

RESUMO

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Animais , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/metabolismo , Fucose/análise , Fucose/química , Fucose/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Lactente , Recém-Nascido , Mamíferos/genética , Mamíferos/metabolismo , Metagenoma , Leite Humano/química , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
3.
FEBS J ; 289(16): 4998-5020, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113503

RESUMO

Fucosylated compounds are abundantly present in nature and are associated with many biological processes, therefore carrying great potential for use in medicine and biotechnology. Efficient ways to modify fucosylated compounds are still being developed. Promising results are provided by glycosyl hydrolases with transglycosylating activities, such as α-l-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus (family GH151 of Carbohydrate-Active enZYmes). Currently, there is no 3D structure representing this glycoside hydrolase family and only a few members have been investigated. Here, we present the first structure-function study of a GH151 member, providing the key insights into its specific oligomerization and active site properties. According to the crystal structure, small-angle X-ray scattering data and catalytic investigation, this enzyme functions as a tetramer of a new type and represents the second known case of active site complementation among all α-l-fucosidases. Mutation of the active site-complementing residue histidine 503 to alanine confirmed its influence on α-l-fucosidase activity and, specifically, on substrate binding. Several unique features of GH151 family α-l-fucosidases were revealed, including the oligomerization pattern, active site accessibility and complementation, and substrate selectivity. Some common properties of GH151 glycosyl hydrolases then would be the overall three-domain structure and conservation of the central domain loop 2 function, including its complementation role and the formation of the carbohydrate-binding platform in the active site vicinity.


Assuntos
Carboidratos , alfa-L-Fucosidase , Catálise , Domínio Catalítico , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
4.
Glycobiology ; 32(6): 529-539, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137077

RESUMO

$\text{L} $ -Fucose is the most widely distributed $\text{L} $-hexose in marine and terrestrial environments and presents a variety of functional roles. $\text{L} $-Fucose is the major monosaccharide in the polysaccharide fucoidan from cell walls of brown algae and is found in human milk oligosaccharides (HMOs) and the Lewis blood group system, where it is important in cell signaling and immune response stimulation. Removal of fucose from these biomolecules is catalyzed by fucosidases belonging to different carbohydrate-active enzyme (CAZy) families. Fucosidases of glycoside hydrolase family 29 (GH29) release α-$\text{L} $-fucose from non-reducing ends of glycans and display activities targeting different substrate compositions and linkage types. While several GH29 fucosidases from terrestrial environments have been characterized, much less is known about marine members of GH29 and their substrate specificities, as only four marine GH29 enzymes were previously characterized. Here, five GH29 fucosidases originating from an uncultured fucoidan-degrading marine bacterium (Paraglaciecola sp.) were cloned and produced recombinantly in Escherichia coli. All five enzymes (Fp231, Fp239, Fp240, Fp251 and Fp284) hydrolyzed the synthetic substrate CNP-α-$\text{L} $-fucose. Assayed against up to 17 fucose-containing oligosaccharides, Fp239 showed activity against the Lewis Y antigen, 2'- and 3-fucosyllactose, while Fp284 degraded 2'-fucosyllactose and Fuc(α1,6)GlcNAc. Furthermore, Fp231 displayed strict specificity against Fuc(α1,4)GlcNAc, a previously unreported specificity in GH29. Fp231 is a monomeric enzyme with pH and temperature optima at pH 5.6-6.0 and 25°C, hydrolyzing Fuc(α1,4)GlcNAc with kcat = 1.3 s-1 and Km = 660 µM. Altogether, the findings extend our knowledge about GH29 family members from the marine environment, which are so far largely unexplored.


Assuntos
Glicosídeo Hidrolases , alfa-L-Fucosidase , Escherichia coli/metabolismo , Fucose/metabolismo , Glicosídeo Hidrolases/química , Humanos , Leite Humano/química , Oligossacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
5.
Appl Environ Microbiol ; 88(2): e0170721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757822

RESUMO

Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.


Assuntos
Bifidobacterium pseudocatenulatum , Leite Humano , Bifidobacterium pseudocatenulatum/metabolismo , Feminino , Humanos , Hidrolases/metabolismo , Lactente , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445166

RESUMO

Fucosylated carbohydrates and glycoproteins from human breast milk are essential for the development of the gut microbiota in early life because they are selectively metabolized by bifidobacteria. In this regard, α-L-fucosidases play a key role in this successful bifidobacterial colonization allowing the utilization of these substrates. Although a considerable number of α-L-fucosidases from bifidobacteria have been identified by computational analysis, only a few of them have been characterized. Hitherto, α-L-fucosidases are classified into three families: GH29, GH95, and GH151, based on their catalytic structure. However, bifidobacterial α-L-fucosidases belonging to a particular family show significant differences in their sequence. Because this fact could underlie distinct phylogenetic evolution, here extensive similarity searches and comparative analyses of the bifidobacterial α-L-fucosidases identified were carried out with the assistance of previous physicochemical studies available. This work reveals four and two paralogue bifidobacterial fucosidase groups within GH29 and GH95 families, respectively. Moreover, Bifidobacterium longum subsp. infantis species exhibited the greatest number of phylogenetic lineages in their fucosidases clustered in every family: GH29, GH95, and GH151. Since α-L-fucosidases phylogenetically descended from other glycosyl hydrolase families, we hypothesized that they could exhibit additional glycosidase activities other than fucosidase, raising the possibility of their application to transfucosylate substrates other than lactose in order to synthesis novel prebiotics.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Fucose/metabolismo , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium/química , Bifidobacterium/genética , Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Glicosilação , Humanos , Leite Humano/metabolismo , Filogenia , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
7.
Appl Biochem Biotechnol ; 193(11): 3553-3569, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312785

RESUMO

The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.


Assuntos
Proteínas de Bactérias/química , Fucose/química , Oligossacarídeos/síntese química , Thermotoga maritima/enzimologia , alfa-L-Fucosidase/química , Solventes/química , Água/química
8.
Bioorg Med Chem ; 42: 116243, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126284

RESUMO

Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.


Assuntos
Fucose/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , alfa-L-Fucosidase/metabolismo , Bacteroides fragilis/enzimologia , Configuração de Carboidratos , Fucose/química , Glicopeptídeos/química , Glicoproteínas/química , Humanos , Lacticaseibacillus casei/enzimologia , Modelos Moleculares , Especificidade por Substrato , alfa-L-Fucosidase/química
9.
Protein Expr Purif ; 186: 105897, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991676

RESUMO

Fucoidan oligosaccharides possesses diverse physicochemical and biological activities. Specific glycoside hydrolases are valuable tools for degrading polysaccharides to produce oligosaccharides. In this study, BcFucA, a novel fucosidase belonging to GH95 family from Bacillus cereus 2-8, was cloned into pET21a vector, expressed in E. coli BL21 (DE3) and characterized. The protein consists of 1136 amino acid residues encoded by 3411 bases and has a molecular weight of 125.35 kDa. The optimal temperature and pH of this enzyme are 50 °C and pH 4.0. In addition, this study showed that the unknown function domain (encoding Lys261-Thr681) defined as a linker is quite important for its activity. The obtained novel enzyme BcFucA will contribute to the effective degradation of fucoidan and future industrial applications.


Assuntos
Bacillus cereus , Escherichia coli/genética , Proteínas Recombinantes de Fusão , alfa-L-Fucosidase , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
10.
Int J Biol Macromol ; 183: 818-830, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965481

RESUMO

Tartary buckwheat is one of the few pseudocereals with abundant flavonoids and starch. However, there are different views on the digestibility of Tartary buckwheat starch (TBS) because of its particle size and structure. In this study, fluorescence spectrum methods and enzymatic kinetics were used to investigate the interaction between TBS /two glycosidase (α-amylase and α-glucosidase) and quercetin to explore its digestive properties and provide a perspective regarding the application of TBS in functional starch products. The results showed that the interaction between TBS and quercetin was probably weak hydrophobic force and hydrogen bonding. The inhibitory effect of quercetin on α-amylase was better than that on α-glucosidase. The half inhibitory concentrations (IC50) of quercetin to α-amylase and α- glucosidase was (270 ±â€¯3.31) and (544 ±â€¯9.01) µg/mL, respectively. The intrinsic fluorescence of two enzymes was statically quenched by forming a complex with quercetin. Quercetin also increased the microenvironment hydrophilicity of tryptophan residues in glycosidase. In vitro digestion experiment demonstrated that quercetin and TBS co-gelatinized together was more effective to inhibit TBS hydrolysis than quercetin itself alone. In the first-order kinetic and LOS model, quercetin-starch gel structure and quercetin inhibitory activity against enzymes had synergistic effects of the TBS digestion.


Assuntos
Quercetina/farmacologia , Amido/química , alfa-Amilases/metabolismo , alfa-L-Fucosidase/metabolismo , Fagopyrum , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Cinética , Ligação Proteica , Quercetina/química , alfa-Amilases/química , alfa-L-Fucosidase/química
11.
ACS Synth Biol ; 10(3): 447-458, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33687208

RESUMO

Human milk oligosaccharide (HMO) is a key component of human milk carbohydrates and is closely related to the nutrition and health benefits of breastfeeding in infants. 2'-Fucosyllactose (2'-FL) is the most abundant fucosylated HMO, which has remarkable value in nutrition and medicine, such as suppressing pathogen infection, regulating intestinal flora, and boosting immunity. However, 2'-FL production via the method of extraction or chemical synthesis cannot meet its large demand, and as a result, environmentally friendly and efficient biotechnological approaches, including in vitro enzymatic synthesis and microbial cell factory production, have been developed and applied to its commercialized production. This review introduces, summarizes, and discusses the recent advances in the biotechnological production of 2'-FL. Furthermore, future research directions for the biotechnological production of 2'-FL as well as the strategies to further improve its concentration are highlighted and discussed.


Assuntos
Biotecnologia , Leite Humano/metabolismo , Trissacarídeos/biossíntese , Fucosiltransferases/química , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Humanos , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
12.
Cell Mol Life Sci ; 78(2): 675-693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333083

RESUMO

The availability and repartition of fucosylated glycans within the gastrointestinal tract contributes to the adaptation of gut bacteria species to ecological niches. To access this source of nutrients, gut bacteria encode α-L-fucosidases (fucosidases) which catalyze the hydrolysis of terminal α-L-fucosidic linkages. We determined the substrate and linkage specificities of fucosidases from the human gut symbiont Ruminococcus gnavus. Sequence similarity network identified strain-specific fucosidases in R. gnavus ATCC 29149 and E1 strains that were further validated enzymatically against a range of defined oligosaccharides and glycoconjugates. Using a combination of glycan microarrays, mass spectrometry, isothermal titration calorimetry, crystallographic and saturation transfer difference NMR approaches, we identified a fucosidase with the capacity to recognize sialic acid-terminated fucosylated glycans (sialyl Lewis X/A epitopes) and hydrolyze α1-3/4 fucosyl linkages in these substrates without the need to remove sialic acid. Molecular dynamics simulation and docking showed that 3'-Sialyl Lewis X (sLeX) could be accommodated within the binding site of the enzyme. This specificity may contribute to the adaptation of R. gnavus strains to the infant and adult gut and has potential applications in diagnostic glycomic assays for diabetes and certain cancers.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/química , Clostridiales/química , Clostridiales/enzimologia , Trato Gastrointestinal/microbiologia , Glicoconjugados/metabolismo , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química
13.
Nat Commun ; 11(1): 6204, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277506

RESUMO

Fucosylation is important for the function of many proteins with biotechnical and medical applications. Alpha-fucosidases comprise a large enzyme family that recognizes fucosylated substrates with diverse α-linkages on these proteins. Lactobacillus casei produces an α-fucosidase, called AlfC, with specificity towards α(1,6)-fucose, the only linkage found in human N-glycan core fucosylation. AlfC and certain point mutants thereof have been used to add and remove fucose from monoclonal antibody N-glycans, with significant impacts on their effector functions. Despite the potential uses for AlfC, little is known about its mechanism. Here, we present crystal structures of AlfC, combined with mutational and kinetic analyses, hydrogen-deuterium exchange mass spectrometry, molecular dynamic simulations, and transfucosylation experiments to define the molecular mechanisms of the activities of AlfC and its transfucosidase mutants. Our results indicate that AlfC creates an aromatic subsite adjacent to the active site that specifically accommodates GlcNAc in α(1,6)-linkages, suggest that enzymatic activity is controlled by distinct open and closed conformations of an active-site loop, with certain mutations shifting the equilibrium towards open conformations to promote transfucosylation over hydrolysis, and provide a potentially generalizable framework for the rational creation of AlfC transfucosidase mutants.


Assuntos
Proteínas de Bactérias/química , Fucose/química , Lacticaseibacillus casei/enzimologia , Simulação de Dinâmica Molecular , Conformação Proteica , alfa-L-Fucosidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Fucose/metabolismo , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Cinética , Lacticaseibacillus casei/genética , Mutação , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
14.
Appl Microbiol Biotechnol ; 104(13): 5813-5826, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388762

RESUMO

Fucosyllactoses have gained much attention owing to their multiple functions, including prebiotic, immune, gut, and cognition benefits. In this study, human milk oligosaccharide (HMO) 2'-fucosyllactose (α-L-Fuc-(1,2)-D-Galß-1,4-Glu, 2'FL) and its isomer 3'-fucosyllactose (α-L-Fuc-(1,3)-D-Galß-1,4-Glu, 3'FL) with potential prebiotic effect were synthesized efficiently by a novel recombinant α-L-fucosidase. An α-L-fucosidase gene (PbFuc) from Pedobacter sp. CAU209 was successfully cloned and expressed in Escherichia coli (E. coli). The deduced amino acid sequence shared the highest identity of 36.8% with the amino sequences of other reported α-L-fucosidases. The purified α-L-fucosidase (PbFuc) had a molecular mass of 50 kDa. The enzyme exhibited specific activity (26.3 U/mg) towards 4-nitrophenyl-α-L-fucopyranoside (pNP-FUC), 3'FL (8.9 U/mg), and 2'FL (3.4 U/mg). It showed the highest activity at pH 5.0 and 35 °C, respectively. PbFuc catalyzed the synthesis of 3'FL and 2'FL through a transglycosylation reaction using pNP-FUC as donor and lactose as acceptor, and total conversion ratio was up to 85% at the optimized reaction conditions. The synthesized mixture of 2'FL and 3'FL promoted the growth of Lactobacillus delbrueckii subsp. bulgaricus NRRL B-548, L. casei subsp. casei NRRL B-1922, L. casei subsp. casei AS 1.2435, and Bifidobacterium longum NRRL B-41409. However, the growths of E. coli ATCC 11775, S. enterica AS 1.1552, L. monocytogenes CICC 21635, and S. aureus AS 1.1861 were not stimulated by the mixture of 2'FL and 3'FL. Overall, our findings suggest that PbFuc possesses a great potential for the specific synthesis of fucosylated compounds.Key Points• A novel α-L-fucosidase (PbFuc) from Pedobacter sp. was cloned and expressed.• PbFuc showed the highest hydrolysis activity at pH 5.0 and 35 °C, respectively.• It was used for synthesis of 3'-fucosyllactose (3'FL) and 2'-fucosyllactose (2'FL).• The mixture of 3'FL and 2'FL promoted the growth of some Lactobacillus sp. and Bifidobacteria sp.


Assuntos
Proteínas de Bactérias/metabolismo , Oligossacarídeos/biossíntese , Pedobacter/enzimologia , Trissacarídeos/biossíntese , alfa-L-Fucosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Lactose/metabolismo , Peso Molecular , Pedobacter/genética , Prebióticos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação
15.
Glycobiology ; 30(9): 735-745, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149359

RESUMO

The deoxy sugar l-fucose is frequently found as a glycan constituent on and outside living cells, and in mammals it is involved in a wide range of biological processes including leukocyte trafficking, histo-blood group antigenicity and antibody effector functions. The manipulation of fucose levels in those biomedically important systems may provide novel insights and therapeutic leads. However, despite the large established sequence diversity of natural fucosidases, so far, very few enzymes have been characterized. We explored the diversity of the α-l-fucosidase-containing CAZY family GH29 by bio-informatic analysis, and by the recombinant production and exploration for fucosidase activity of a subset of 82 protein sequences that represent the family's large sequence diversity. After establishing that most of the corresponding proteins can be readily expressed in E. coli, more than half of the obtained recombinant proteins (57% of the entire subset) showed activity towards the simple chromogenic fucosylated substrate 4-nitrophenyl α-l-fucopyranoside. Thirty-seven of these active GH29 enzymes (and the GH29 subtaxa that they represent) had not been characterized before. With such a sequence diversity-based collection available, it can easily be used to screen for fucosidase activity towards biomedically relevant fucosylated glycoproteins. As an example, the subset was used to screen GH29 members for activity towards the naturally occurring sialyl-Lewis x-type epitope on glycoproteins, and several such enzymes were identified. Together, the results provide a significant increase in the diversity of characterized GH29 enzymes, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.


Assuntos
alfa-L-Fucosidase/metabolismo , Humanos , Polissacarídeos/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/isolamento & purificação
16.
Anal Biochem ; 582: 113358, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278898

RESUMO

2'-Fucosyllactose (2'-FL) is the most abundant milk oligosaccharide in human breast milk and it has several benefits for infant health. The quantification of 2'-FL in breast milk or in samples from other sources generally requires lengthy analyses. These methods cannot be used to simultaneously detect 2'-FL in numerous samples, which would be more time-efficient. In this study, two genes, namely α1,2-fucosidase from Xanthomonas manihotis and l-fucose dehydrogenase from Pseudomonas sp. no. 1143, were identified, cloned and overexpressed in E. coli. The recombinant enzymes were produced as 6 × His-tagged proteins and were purified to homogeneity using Ni2+ affinity chromatography. The purified α1,2-fucosidase and l-fucose dehydrogenase are monomers with molecular masses of 63 kDa and 36 kDa, respectively. Both enzymes have sufficiently high activities in phosphate-buffered saline (pH 7.0) at 37 °C, making it possible to develop a coupled enzyme reaction in a single buffer system for the quantitative determination of 2'-FL in a large number of samples simultaneously. This method can be used to quantify 2'-FL in infant formulas and in samples collected from different phases of the biotechnological production of this oligosaccharide. Furthermore, the method is applicable for the rapid screening of active variants during the development of microbial strains producing 2'-FL.


Assuntos
Ensaios Enzimáticos , Fórmulas Infantis/química , Leite Humano/química , Trissacarídeos/análise , Desidrogenases de Carboidrato/química , Humanos , Lactente , Recém-Nascido , Pseudomonas/metabolismo , Xanthomonas axonopodis/metabolismo , alfa-L-Fucosidase/química
17.
Carbohydr Res ; 475: 27-33, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776756

RESUMO

An α-l-fucosidase (Pap-Alf) was purified from the pancreas of a starfish Patiria pectinifera by ammonium sulfate precipitation followed by several column chromatographies. The molecular mass of the purified enzyme was estimated to be 52.6 kDa by SDS-PAGE, although gel filtration analysis of the native enzyme suggests it exists as a homodimer in solution. The purified enzyme showed maximal activity at pH 5.0 and 70 °C. The enzyme was highly specific toward a fucosyl-monosaccharide (Fuc-α-pNP), but it also showed activity toward 2-sulfo-Fuc-α-pNP and fucosyl-α-lactosides (Fuc-α-Galß1→4Glc-ß-pNP). We determined the primary structure of the α-l-fucosidase and validated its expression level in starfish tissue. Whole genome sequence analysis of P. pectinifera was also performed in the present study. Detailed primary structural analysis using bioinformatics tools revealed Pap-Alf lacks the C-terminal region that is otherwise conserved in all previously described α-l-fucosidases. Quantitative gene expression analysis of Pap-Alf in each tissue indicated that the expression of Pap-Alf gene in pancreas was 5-fold higher than in ovary.


Assuntos
Clonagem Molecular , Pâncreas/enzimologia , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , Animais , Regulação Enzimológica da Expressão Gênica/genética , Estrelas-do-Mar , alfa-L-Fucosidase/metabolismo
18.
Anal Bioanal Chem ; 411(7): 1467-1477, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706074

RESUMO

α-L-Fucosidase (AFU) is a promising therapeutic target for the treatment of inflammation, cancer, cystic fibrosis, and fucosidosis. Some of the existing analytical methods for the assessment of AFU activity are lacking in sensitivity and selectivity, since most of them are based on spectrofluorimetric methods. More recently, mass spectrometry (MS) has evolved as a key technology for enzyme assays and inhibitor screening as it enables accurate monitoring of the conversion of substrate to product in enzymatic reactions. In this study, UHPLC-MS has been utilized to develop a simple, sensitive, and accurate assay for enzyme kinetics and inhibition studies of AFU3, a member of the AFU family. A reported method for analyzing saccharide involving a porous graphitic carbon column, combined with reduction by NaBH4/CH3OH, was used to improve sensitivity. The conversion of saccharide into alditol could reach nearly 100% in the NaBH4 reduction reaction. In addition, the bioanalytical quantitative screening method was validated according to US-FDA guidance, including selectivity, linearity, precision, accuracy, stability, and matrix effect. The developed method displayed a good accuracy, high sensitivity (LOD = 0.05 mg L-1), and good reproducibility (RSD < 15%). The assay accurately measured an IC50 value of 0.40 µM for the known AFU inhibitor, deoxyfuconojirimycin, which was consistent with results reported in the literature. Further validation of the assay was achieved through the determination of a high Z'-factor value of 0.89. The assay was applied to screen a marine-derived chemical library against AFU3, which revealed two marine-oriented pyrimidine alkaloids as potential AFU3 inhibitors. Graphical abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , alfa-L-Fucosidase/antagonistas & inibidores , Ensaios Enzimáticos/métodos , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo
19.
Glycobiology ; 29(1): 59-73, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544181

RESUMO

α-l-Fucosidase isoenzyme 1 from bacterium Paenibacillus thiaminolyticus is a member of the glycoside hydrolase family GH29 capable of cleaving l-fucose from nonreducing termini of oligosaccharides and glycoconjugates. Here we present the first crystal structure of this protein revealing a novel quaternary state within this family. The protein is in a unique hexameric assembly revealing the first observed case of active site complementation by a residue from an adjacent monomer in this family. Mutation of the complementing tryptophan residue caused changes in the catalytic properties including a shift of the pH optimum, a change of affinity to an artificial chromogenic substrate and a decreased reaction rate for a natural substrate. The wild-type enzyme was active on most of the tested naturally occurring oligosaccharides and capable of transglycosylation on a variety of acceptor molecules, including saccharides, alcohols or chromogenic substrates. Mutation of the complementing residue changed neither substrate specificity nor the preference for the type of transglycosylation acceptor molecule; however, the yields of the reactions were lower in both cases. Maltose molecules bound to the enzyme in the crystal structure identified surface carbohydrate-binding sites, possibly participating in binding of larger oligosaccharides.


Assuntos
Proteínas de Bactérias/química , Paenibacillus/enzimologia , alfa-L-Fucosidase/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Mutação , Paenibacillus/genética , alfa-L-Fucosidase/genética
20.
Biotechnol Appl Biochem ; 66(2): 172-191, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508310

RESUMO

Fucosylated oligosaccharides play important physiological roles in humans, including in the immune response, transduction of signals, early embryogenesis and development, growth regulation, apoptosis, pathogen adhesion, and so on. Efforts have been made to synthesize fucosylated oligosaccharides, as it is difficult to purify them from their natural sources, such as human milk, epithelial tissue, blood, and so on. Within the strategies for its in vitro synthesis, it is remarkable the employment of fucosidases, enzymes that normally cleave the fucosyl residue from the non-reducing end of fucosylated compounds, as these enzymes are also capable of synthesizing them by means of a transfucosylation reaction. This review summarizes the progress in the use of fucosidases for the synthesis of compounds that have potential for industrial and commercial applications.


Assuntos
Fucose/química , Oligossacarídeos/síntese química , alfa-L-Fucosidase/química , Oligossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...